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Recent studies in these laboratories have revealedotuit
azoketones (e.gl) undergo rhodium(ll)-catalyzed coupling with
alcohols to selectively deliveZj-alkoxy enols (e.g.3, Scheme
1).12When generated under these neutral conditions, alkoxy enols
are sufficiently stable to enable their manipulation in a number
of synthetically useful ways. In particular, we have been interested
in the sigmatropic chemistry of enols derived from allylic alcohols,
which undergo exceptionally facile Claisen rearrangement to
furnish tertiaryo-hydroxy carbonyl compounds? Recently, we
reported the extension of this tandem enol formation/Claisen
process to furnish tertiarg-hydroxy alleneg:* In that study, it
was found that the standard Claisen conditions, when applied to
propargylic alcohols, also gave rise to a byproduct derived from
an apparent [2,3]-rearrangement (e5gScheme 1). Furthermore,
the amount o6 coproduced was dependent both on catalyst load
and ligand. In this communication, we describe investigations that
establish the [2,3]-rearrangement as a versatile, Lewis acid-
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In addition, enantioselective [2,3]-rearrangement can be realized
using a chiral Lewis acid promoter.

Extensive catalyst screening further clarified the relationship
between catalyst structure and reaction course {i-e4 vs 1—5,

Scheme 1), revealing a substantial dependence on electronics (cf.,

Rhy(cap) vs Rhy(tfa),).>6 However, at the outset, it was unclear

if the observed catalyst dependence derived from perturbation of
the primary sigmatropic event or catalysis of a secondary [1,2]-
o-ketol rearrangement (i.e4—5, Scheme 1). Our studies with
allyloxy enols, which undergo [3,3]-rearrangement regardless of
the Rh(ll) catalyst employed, first led us to speculate that the
latter process was more likely. In an effort to substantiate this
hypothesis, we devised the isotope-labeling study shown in
Scheme 2.

Diazoketonel was combined with 3-butyn-2-02) under both
[3,3]-selective (i.e., Rifcap)) and [2,3]-selective (i.e., R{tfa)s)
conditions. Incorporated in each reaction was the independently
prepared, deuterium-labeled analogue of the unanticipated re-
gioisomer. Use of Riftfa), in the presence of [@-gave rise to
the apparent [2,3]-produc free of deuterium incorporation.
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Similarly, use of Rk(cap), in the presence of B-gave exclusively
protic [3,3]-product4, illustrating that the anticipated [1,2]-
ketol rearrangement process was not operative.

Having demonstrated that rearrangement proddiated5 arise
via independent pathways, we began to favor a mechanism
wherein the rhodium(ll) catalyst adopts a dual role, promoting
both enol formation and [2,3]-rearrangement. In this scenario,
coordination of Rh(ll) to the enol ether oxygen promotes g S
process (Scheme 3). Attenuating the Lewis acidity of the Rh(ll)
catalyst (i.e., Rk(cap) vs Rhy(tfa),) would therefore be expected
to slow this process, enabling thermal [3,3]-rearrangement to
predominate. Initial support for this hypothesis was found in the
reaction kinetics, which showed that [2,3]-rearrangeme3iof
the presence of 0.1 mol % Rtfa), (t1» = 5.4 min, 25°C) was
dramatically accelerated relative to that in the presence of 1 mol
% Rhy(OAC), (t12 = 3.5 h, 40°C). To demonstrate that this rate
enhancement derived from interaction of the enol with Rh(ll),
we treated a solution df and?2 (1.2 equiv) with 1 mol % Rk
(OAc),, cleanly generating en@ (Scheme 4, observed By
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Table 1. Examples with Doubly Stabilized-Diazoketone
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aConditions A: 0.5 mol % RHcap), PhH, reflux, 10 min.
b Conditions B: 0.25 mol % Riftfa)s, PhH, 10 min rt {) or reflux
(6). © A 44% yield of tautomerized product was also isolatedin 83%
yield of tautomerized product was isolated exclusively.

NMR).” Treatment of the enol solution with 0.5 mol % fRifa),
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Table 2. Examples with Monostabilized-Diazoketones
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aConditions A: 0.25 mol % Rifcap), PhH, reflux, 10 min.
b Conditions B: 5 mol % Ri{oct), PhH, reflux, 10 min¢ 20 mol %
Rhy(oct), was employed? An 11% yield of enoneé (ref 10) was also
isolated.¢ A 5% yield of enoneii (ref 10) was also isolatedOnly
enoneii (ref 10) was isolated in 25% yield.

Table 3. Effect of Lewis Acid Additives on Rearrangement of
Enol 3#

Lewis acid additive/conditions 5:4P yield, %
no additive, PhHA, 10 min 1:2.3 78
1 equiv CuSQ@, PhH,A, 10 min 251 70
5 mol % AgBF, PhH, rt, 2 min 60:1 80
15 mol % [Sr-((S9-Ph-pybox)](OTf (9),  >100:1 76
CH,Cly, rt, 35 min
2.5 mol % [Cu-((S9-Ph-pybox)](OTf} (10), >100:1 67

PhH, rt, 5 min

aGenerated in all cases by treatmentlofind 2 with 1 mol %
Rh(OAC),, 1t, 5 min.? Ratios determined by integration i NMR

resulted in rapid [2,3]-rearrangement at room temperature, aresonances.
process that could be completely suppressed by prior addition of

dimethyl sulfide (2 equiv) to yield only [3,3]-rearrangement
product4 upon heating.

substrates due to a substituent-controlled reduction in [3,3Frate.
However, this competition is not observed with [2,3]-rearrange-

Having established the basis for the divergent reactivity of enol ment. Reduced yields are observed for both processes with

3, we explored our ability to manipulate reaction outcome in 2-methyl-3-butyn-2-ol (cf., entries 4a,b) due to inefficient car-
related substrates. As shown in Tables 1 and 2, similar control henoid capturé?

can be achieved with a number@idiazoketones and propargylic
alcohols affording a variety of substituted allenes in good to
excellent yield. With doubly stabilized-diazoketones (i.e1, and

6), use of RR(tfa), affords exclusively the product of [2,3]-
rearrangement. Use of Rbap), generates the [3,3]-product with
1, however, this catalyst does not efficiently dediazotz& he
identical conditions (Rifcap), benzene, reflux) are employed
to effect exclusive [3,3]-rearrangement with monostabilized
a-diazoketones (i.e.7 and 8, Table 2), while the harsher Rh

The determination that Rfifa), was functioning in a Lewis
acidic capacity to facilitate [2,3]-rearrangement led to an inves-
tigation of other Lewis acid additives for similar activity. As can
be seen in Table 3, en8lis successfully intercepted by several
Lewis acids, including (pybox)-Sn(I1pf and (pybox)-Cu(ll) 10)
catalysts which afford, at room temperature and with low catalyst
loadings, the [2,3]-product5] via a three-step, two metal-
catalyzed proces@

The success of Lewis acidsand 10 prompted us to explore

(tfa), catalyst is replaced by a higher catalyst loading of the more the possibility of asymmetric induction in the [2,3]-rearrangement

mild Rhy(oct), to furnish the [2,3]-product.In accord with our
studies of allyloxy enols, tautomerization of propargyloxy enols

(Scheme 5). We were delighted to find that treatment of
o-diazoketonél and propargyl alcohol (1.2 equiv) with 1 mol %

is observed to compete with [3,3]-rearrangement in certain Rh,(OAc), affords enofL1, which, upon treatment with [C8(S-

(7) <10% [2,3]-rearrangement of endis observed aftel h in thepresence
of 1 mol % Rh(OAc), at 25°C.
(8) This catalyst inhibition experiment illustrates the Rh(ll)-dependent

nature of the [2,3]-rearrangement and the catalyst independence of the [3,3]

rearrangement. The selection of dimethyl sulfide was based on theKagge
reported for binding of tetrahydrothiophene toRfut), see: Drago, R. S.;
Bilgrien, C. J.Polyhedron1988 7, 1453.

(9) Use of Ri(tfa), with monostabilizedx-diazoketones leads, in general,
to intractable mixtures of products. The ftt), catalyst is electronically
similar to RB(OAc), with solubility equivalent to Rj{tfa)a.

(10) The principal byproduct in reactions with 2-methyl-3-butyn-2-ol is
the correspondingZ)-enone (e.qgi, i) which arises vigs-hydride elimination

of the uncaptured carbenoid, see: Taber, D. F.; Herr, R. J.; Pack, S. K;

Geremia, J. MJ. Org. Chem1996 61, 2908.
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i R = CH,CO,Et
ii R=C3Hy

Ph-pybox(HO),](OTf), (12), affords R)-13in 61% yield= and

(11) The structure assigned to each compound is in accord with its infrared
_and high-field*H (500 MHz) and*3C (125 MHz) NMR spectra as well as
with appropriate parent ion identification by high-resolution mass spectrometry.

(12) For the preparation of bis(oxazolinyl)pyridine catalyg&end10, see:

(a) Evans, D. A.; MacMillan, D. W. C.; Campos, K. B. Am. Chem. Soc.
1997, 119 10859. (b) Evans, D. A.; Kozlowski, M. C.; Murry, J. A.; Burgey,
C. S.; Campos, K. R.; Connell, B. T.; Staples, RJ.JAm. Chem. S0d.999
121, 669.

(13) ®-(—)-15is isolated as a byproduct of this reaction (30% yield);
however, isotope-labeling studies prove th&tis not derived froml3 (see
Supporting Information). Rather, it is believed to arise from the same complex
14 via a proton-transfer event.
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cheme n summary, we have shown propargyloxy enols are
Sch 5 | h h that | |
o on o oH capable of undergoing rearrangement to alleayilydroxyketones
nﬁ(om, \\=:<Me 25moret2 MO, pme= via thermal [3,3]-rearrangement and Lewis acid-catalyzed [2,3]-
PhA. 1t @ o en A Me rearrangement pathways. The latter has proven amenable to
n ’ o asymmetric catalysis, affording [2,3]-rearrangement product in
" (A-(+)-13 good yield and high % ee. Further studies into asymmetric
QL 61% yield - -
o\l'/(,‘j\',o 00% se catalysis of the [2,3]-rearrangement and the chemistry of alkoxy
S’"Iaé“‘ol"‘a) 2110 enols are in progress.
Ph 12 Ph
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Figure 1. Computational structure of enol compléx. and stereochemical proofs pertaining to all products illustrated in Schemes
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minimum conformation of this complex by Monte Carlo methods,
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